Medium-spin spectroscopy of the neutron-rich 84Se isotope: decrease in energy of the N=50 neutron-core excitation

Evaporation reactions with stable projectiles have been used to produce the nucleus 84Se50 by the reaction of fission induced by heavy ions 18O+208Pb at 85 MeV bombarding energy. The medium-spin states of 84Se have been identified for the first time with the EUROBALL IV spectrometer and the level scheme was determined up to an excitation energy of ~5 MeV and a moment angular of ~7h. The results obtained have been interpreted by comparison with the level schemes of the heavier N=50 isotones. We have thus been able to demonstrate a weakening of the spherical N=50 gap when Z decreases from 38 to 34.

Introduction

Study of nuclei close to 78Ni is of primary importance to determine directly how the N=50 shell gap evolves at such large neutron excess. A very efficient method to estimate the energy of a shell gap is to study the particle-hole states in which one nucleon is promoted across the gap. For instance, the multiplet of six states with spin values ranging from 2$^+$ to 7$^+$ corresponds to the N=50 core-excitation ($\nu g_{9/2}^{-1} \otimes \nu d_{5/2}^{+1}$). These high-spin states have been measured in 90Zr [1] and in 88Sr [2] with transfer reactions and in 86Kr using fusion-evaporation reaction with stable projectile [3]. The extension of such measurements to nuclei far from the stability valley can be done using another technique, fission induced by heavy ions.

We report here new results obtained in the 84Se nucleus produced in the fusion-fission reaction 18O+208Pb at 85 MeV bombarding energy and studied with the EUROBALL IV array. Its medium-spin states have been identified up to spin 7h. From comparisons with the excited states known in the heavier N=50 isotones, three excited states with spin 5$^+$, 6$^+$ and 7$^+$ have been interpreted to be due to the neutron-core excitation [4].

I – Experimental procedures

The beam was provided by the VIVITRON accelerator of IReS (Strasbourg) and the target consisted of a self-supported 100 mg/cm2 208Pb foil thick enough to stop the recoiling nuclei. The EUROBALL IV spectrometer was used to detect in coincidence the emitted γ-rays. A set of 4.109 three- and higher-fold events has been recorded and are available for subsequent analysis.

More than one hundred nuclei are produced at high spin in such experiments and the unambiguous identification of high-spin levels which are partially unknown is based on the fact that prompt γ-rays emitted by
complementary fragments are detected in coincidence. This method has been used to identify the γ-ray cascades of the 84Se nucleus. Its complementary fragments are the 136-139Ba isotopes, the total number of emitted neutrons being 6, 5, 4, and 3 respectively.

II – Experimental results
The first excited state in 84Se is located at 1454 keV. In order to identify the second yrast transition of 84Se, we have looked for new transitions in all the spectra gated by the most intense transition of the complementary fragments and by the 1454 keV 84Se yrast transition. It appears that a 667 keV can be clearly assigned to 84Se (cf. figure 1). The spectrum gated on these two yrast transitions reveals new transitions depopulating the high-spin states of 84Se. They are given in the following table.

The level scheme presented in figure 2 has been deduced from further investigations of the coincidence data. It has been obtained up to 4.9 MeV excitation energy and spin I ~ 7h. Spin values of the 1454 keV and 2121 keV yrast transitions of 84Se have been assigned from γ-ray angular correlation measurements in which the coincidence rate of two successive γ-transitions is analyzed as a function of the average relative angle between the two fired detectors. The statistics of our data set was unfortunately too poor to perform the same analysis for the other states of 84Se.

Figure 1: Double-gated spectra a) set on the 818 keV and 1454 keV yrast transitions of 136Ba and 84Se respectively and b) set on the 1454 keV and 667 keV yrast transitions of 84Se. Transitions emitted by the complementary fragments, 136Ba (circles), 137Ba (triangles), 138Ba (stars) and 139Ba (crosses) are indicated in the spectra.

Figure 2: Level scheme of 84Se obtained as fission fragment in the fusion reaction 18O+208Pb at 85 MeV beam energy.

II – Discussion
Shell-model calculations in large model spaces had been already performed in order to describe the structure of the N=50 and Z<50 nuclei [5,6,7]. However, they are unable to give reliable predictions for the lightest isotones, such as 84Se.

The new results obtained in this work will be discussed taking advantage of the evolution of the experimental states in the neighbouring isotones and of results of shell-model calculations with large configuration spaces (f\textsubscript{5/2}, p\textsubscript{3/2}, p\textsubscript{1/2}, g\textsubscript{9/2} orbitals for protons; g\textsubscript{9/2} and d\textsubscript{5/2} orbitals for neutrons allowing the neutron-core excitation) obtained for 86Kr [3].

Medium-spin levels (I \leq 8) of the four light N=50 isotones are presented in figure 3.
Figure 3: Evolution of the high-spin states of the four even-even N=50 isotones from Z = 34 (Se) to 40 (Zr). States with proton configurations within the fp shells are drawn with filled diamonds, those containing the \(\pi g_{9/2} \) shell are drawn with empty symbols (diamonds and circles). States due to the neutron-core excitation, \(\nu g_{9/2}^{-1} \nu d_{5/2}^{+1} \), are drawn with filled squares.

The configuration of the first excited states mainly involves the proton subshells, \(f_{5/2}, p_{3/2}, p_{1/2} \). At higher excitation energy, the first negative-parity excited states have the main configuration, \(\pi (p_{3/2}/f_{5/2})^{-1} \pi g_{9/2}^{+1} \).

States involving a neutron-core excitation will be discussed in more details. The configuration of the first neutron-core excitation, \(\nu g_{9/2}^{-1} \nu d_{5/2}^{+1} \), gives a multiplet of states with spin values ranging from \(2^+ \) to \(7^+ \).

The whole multiplets are known in the heavier N=50 isotones, \(^{90}\text{Zr} \) and \(^{88}\text{Sr} \), thanks to transfer reactions. The results of shell model calculations for \(^{86}\text{Kr} \) including or not a neutron valence space have clearly shown that its \(5^+, 6^+ \), and \(7^+ \) yrast states have to be interpreted in terms of the neutron-core N=50 excitation.

Similarly the three new states observed in \(^{84}\text{Se} \) at 3537, 3701, and 4405 keV, can be interpreted in terms of the \(\nu g_{9/2}^{-1} \nu d_{5/2}^{+1} \) neutron configuration, due to the N=50 neutron-core excitation.

The evolution of the energy of the \(5^+, 6^+ \) and \(7^+ \) states, drawn in figure 3, points out a lowering in their excitation energy (already visible from \(^{88}\text{Sr} \) to \(^{86}\text{Kr} \) which goes on from \(^{86}\text{Kr} \) to \(^{84}\text{Se} \). Therefore a weakening of the N=50 spherical gap takes place when Z is decreasing form 38 to 34.

Conclusion

High-spin structure of the N=50 nucleus have been populated using the fusion-fission reaction \(^{18}\text{O} + ^{208}\text{Pb} \) at 85 MeV and the transitions between the excited states of this nucleus have been measured with the EUROBALL IV spectrometer. The level scheme has been extended up to 4.9 MeV excitation energy and spin values of 7h. The interpretation of the results puts in light a weakening of the N=50 spherical shell gap, when Z decreases from 38 to 34.